经典排序算法

排序算法说明

定义

对一序列对象根据某个关键字进行排序。

术语说明

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
  • 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
  • 内排序:所有排序操作都在内存中完成;
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
  • 时间复杂度:一个算法执行所耗费的时间。
  • 空间复杂度:运行完一个程序所需内存的大小。

冒泡排序

描述

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

实现

  1. 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  3. 针对所有的元素重复以上的步骤,除了最后一个;
  4. 重复步骤1~3,直到排序完成。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
function bubbleSort (arr) {
console.time('耗时:')

for (let i = 0; i < arr.length; i++) {
for (let j = 0; j < arr.length - i; j++) {
if (arr[j] > arr[j + 1]) {
[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]] //交换元素
}
}
}
console.timeEnd('耗时:')

return arr
}

优化

改进冒泡排序: 设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置。由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
function bubbleSort (arr) {
console.time('耗时:')

var len = arr.length
while (len > 0) {
let pos = 0
for (let i = 0; i < len; i++) {
if (arr[i] > arr[i + 1]) {
[arr[i], arr[i + 1]] = [arr[i + 1], arr[i]] // 交换元素
pos = i
}
}
len = pos
}
console.timeEnd('耗时:')

return arr
}

动图

算法分析

  • 最佳情况:T(n) = O(n)

当输入的数据已经是正序时

  • 最差情况:T(n) = O(n2)

当输入的数据是反序时

  • 平均情况:T(n) = O(n2)

选择排序

表现最稳定的排序算法之一,因为无论什么数据进去都是O(n²)的时间复杂度…..所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

描述

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

实现

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  1. 初始状态:无序区为R[1..n],有序区为空;
  2. 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  3. n-1趟结束,数组有序化了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function selectionSort (arr) {
console.time('耗时:')
let len = arr.length
let minIndex
for (let i = 0; i < len; i++) {
minIndex = i
for (let j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j
}
}
[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]]
}
console.timeEnd('耗时:')
return arr
}

动图

分析

  • 最佳情况:T(n) = O(n2)
  • 最差情况:T(n) = O(n2)
  • 平均情况:T(n) = O(n2)

插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。当然,如果你说你打扑克牌摸牌的时候从来不按牌的大小整理牌,那估计这辈子你对插入排序的算法都不会产生任何兴趣了…..

描述

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

实现

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function insertionSort (arr) {
console.time('插入排序耗时');

for (let i = 1; i < arr.length; i++) {
let key = arr[i]
let j = i - 1
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j]
j--
}
arr[j + 1] = key
}
console.timeEnd('插入排序耗时');
return arr
}

优化

改进插入排序: 查找插入位置时使用二分查找的方式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function insertionSort (array) {
console.time('二分插入排序耗时:');

for (var i = 1; i < array.length; i++) {
var key = array[i]; var left = 0; var right = i - 1
while (left <= right) {
var middle = parseInt((left + right) / 2)
if (key < array[middle]) {
right = middle - 1
} else {
left = middle + 1
}
}
for (var j = i - 1; j >= left; j--) {
array[j + 1] = array[j]
}
array[left] = key
}
console.timeEnd('二分插入排序耗时:');

return array
}

动图

分析

  • 最佳情况:输入数组按升序排列。T(n) = O(n)
  • 最坏情况:输入数组按降序排列。T(n) = O(n2)
  • 平均情况:T(n) = O(n2)

希尔排序

1959年Shell发明; 第一个突破O(n^2)的排序算法;是简单插入排序的改进版;它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序

描述

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行依次直接插入排序。

实现

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  2. 按增量序列个数k,对序列进行k 趟排序;
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function shellSort (arr) {
var len = arr.length

var temp

var gap = 1
console.time('希尔排序耗时:')
while (gap < len / 5) { // 动态定义间隔序列
gap = gap * 5 + 1
}
for (gap; gap > 0; gap = Math.floor(gap / 5)) {
for (var i = gap; i < len; i++) {
temp = arr[i]
for (var j = i - gap; j >= 0 && arr[j] > temp; j -= gap) {
arr[j + gap] = arr[j]
}
arr[j + gap] = temp
}
}
console.timeEnd('希尔排序耗时:')
return arr
}
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]
console.log(shellSort(arr))// [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

分析

  • 最佳情况:T(n) = O(nlog2 n)
  • 最坏情况:T(n) = O(nlog2 n)
  • 平均情况:T(n) =O(nlog n)

快速排序

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高! 它是处理大数据最快的排序算法之一了。

描述

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

实现

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  1. 从数列中挑出一个元素,称为 “基准”(pivot);
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
function quickSort (arr) {
if (arr.length <= 1) return arr
let left = []
let right = []
let center = arr.splice(Math.floor(arr / 2), 1)[0]
for (let i = 0; i < arr.length; i++) {
if (arr[i] < center) {
left.push(arr[i])
} else {
right.push(arr[i])
}
}
return quickSort(left).concat([center], quickSort(right))
}

动图

分析

  • 最佳情况:T(n) = O(nlog n)
  • 最差情况:T(n) = O(n2)
  • 平均情况:T(n) = O(nlog n)